

FACET: Future ATM Concepts Evaluation Tool

Karl Bilimoria and Banavar Sridhar NASA Ames Research Center

Gano Chatterji, Kapil Sheth, and Shon Grabbe Raytheon ITSS

Free Flight DAG-TM Workshop

NASA Ames Research Center 24 May 2000

Outline

- Introduction to FACET
- Major Functionalities and Features
- Graphical User Interface
- Applications
 - Airborne Self-Separation for Free Flight
 - Benefits of CTAS Direct-To Tool
 - Advanced Traffic Flow Management
 - Space Vehicle Operations in the Airspace System
 - Visualization of Air Traffic Data
- Summary

Introduction to FACET

- Simulation tool for exploring advanced ATM concepts
 - Flexible environment for rapid prototyping of new ATM concepts
 - Can be used for both interactive and off-line studies
 - Interface with ETMS data (track and flight plan information)
 - Weather data processing

Key Attributes

- Models airspace operations at U.S. national level (~ 5,000 aircraft)
- Modular architecture for flexibility
- Software written in "C" and "Java" programming languages
 - » Easily adaptable to different computer platforms
 - » Runs on Sun, SGI, PC and Macintosh computers
- Hierarchically compatible with CTAS in scope and fidelity

FACET complements CTAS

<u>Feature</u>	<u>FACET</u>	<u>CTAS</u>
Trajectory Modeling	Simplified 3-DOF model (climb rate/speed tables)	Point-mass 3-DOF model (thrust and drag models)
Airspace Modeling	ARTCCs only	ARTCC and TRACON
Flight Plan Processing	Yes	Yes
Weather Modeling	RUC-2	RUC-2
Modeling Scope	National Airspace (~ 5,000 aircraft)	Center Airspace (~ 500 aircraft)
Computer Platform	Single desktop computer (e.g., Sun, SGI, Mac, PC)	8 to 10 networked Sun workstations

Principal Functionalities

- Modeling of en route airspace over the entire continental U.S.
 - Center and sector boundaries
 - Special Use Airspace boundaries
 - Jet Routes and Victor Airways
 - Locations of navaids and airports
- 4-D trajectory modeling capabilities
 - Fly flight-plan routes or direct (great circle) routes over round earth
 - Climb/descent performance models for 66 aircraft types, mapped to over 500 aircraft types
 - Dynamic models for turns and acceleration/deceleration
 - Weather models (e.g., winds, convective cells)
 - Ability to add new class of vehicles (e.g., space launch vehicles)

Schematic Overview of FACET

Graphical User Interface

Applications

- Airborne Self-Separation for Free Flight
- Benefits Study of CTAS Direct-To Tool
- Advanced Traffic Flow Management (TFM)
- Space Launch Vehicle Operations in the Airspace System
- Visualization of Air Traffic Data

Airborne Self-Separation (1 of 2)

- Distributed Air/Ground Traffic Management (DAG-TM) is a detailed concept of operations for mature Free Flight
 - DAG-TM concept developed by a team of NASA researchers
 - Free Maneuvering is a key element of DAG-TM
 - Airborne self-separation is necessary to enable Free Maneuvering
- Conducted feasibility evaluation of airborne separation assurance for free flight
 - System performance measured by path length and flight time
 - System stability measured by trajectory interruptions
 - Two CD&R schemes implemented in FACET
 - » Geometric Optimization approach (developed at NASA-Ames)
 - » Modified Potential Field approach (developed at MIT Lincoln Lab)

Conflict Detection and Resolution (CD&R) using Geometric Optimization approach

Test Scenario without CD&R

Test Scenario with CD&R

Benefits of Direct-To Tool (1 of 2)

- Direct-To is part of the CTAS family of controller DSTs
 - Identifies flight plan "short-cuts" that provide time savings
- Prototype of Direct-To tool implemented in FACET
 - Calibrated with CTAS data for Forth Worth Center
- 24-hr ETMS data set processed in FACET for 20 Centers in the U.S., using various windows
- Compiled results for flight time savings

Benefits of Direct-To Tool (2 of 2)

Total Savings estimated at \$107 Million/Year (169 flight hours per day, at an operating cost of \$29/minute)

Advanced TFM Techniques (1 of 3)

- An important TFM function is to satisfy airspace constraints (weather cells, Special Use Airspace, congested sectors) without exceeding controller workload thresholds
- **Dynamic Density**
 - Controller workload is a function of Airspace Complexity
 - » Depends on: number of aircraft, geometry of trajectories, aircraft mix, etc.
 - Dynamic Density is a measure of Airspace Complexity
 - » A Dynamic Density measure has been implemented in FACET
 - This measure was derived from actual controller workload and air traffic data recorded during a NASA field test
- Airspace re-design and aircraft re-routing techniques, utilizing dynamic density, are being developed and tested

Advanced TFM Techniques (2 of 3)

Reduce predicted sector overload by re-configuring sector boundaries

Before Re-sectorization

After Re-sectorization

Advanced TFM Techniques (3 of 3)

Satisfy airspace restrictions by re-routing aircraft

Aircraft counts

Re-routing around a region of airspace

Space Vehicle Operations (1 of 2)

- Interaction of Air and Space Traffic
 - Space vehicles operate in the U.S. NAS during re-entry and/or ascent
 - Space vehicle operations projected to increase significantly
 - » Future spaceports may be located inland (away from coastlines)
 - Large volumes of Special Use Airspace (SUA) reserved for operations
 - Need to study interactions between air and space vehicle operations
 - » Shared airspace usage for all vehicle classes
 - » Dynamic negotiation/allocation of space traffic corridors
 - » Coordinate spaceport operations with air traffic operations
- Preliminary studies are underway
 - Trajectory modeling of space vehicles
 - Initiated study on interaction of air and space traffic

NASA

Interaction of Air and Space Vehicle Traffic

Example of RLV Airspace Corridor

Aircraft Count in RLV Corridor

Summary

- Future ATM Concepts Evaluation Tool (FACET)
 is a flexible environment for rapid prototyping and evaluation
 of advanced ATM concepts
- Key Features
 - System-wide modeling of airspace and 4-D trajectories
 - Modular, platform-independent architecture
- Prototypes of several advanced ATM concepts are under development and evaluation in FACET
- Evolution of FACET will be guided by NASA's research needs